
Approved for public release; distribution unlimited.

Verification of Agent Behavioral
Models

The 2000 International Conference on Artificial Intelligence (IC-
AI'2000)

June 26 - 29, 2000 Monte Carlo Resort, Las Vegas, Nevada

Timothy Lacey & Scott A. DeLoach

Department of Electrical & Computer Engineering
Air Force Institute of Technology

2950 P Street, Wright-Patterson AFB, OH 45433-7765

The 2000 International Conference on Artificial Intelligence (IC-AI'2000)
June 26 - 29, 2000 Monte Carlo Resort, Las Vegas, Nevada

1

Verification of Agent Behavioral Models♦♦♦♦

Timothy H. Lacey and Scott A. DeLoach
Air Force Institute of Technology

Graduate School of Engineering and Management
Department of Electrical and Computer Engineering
Wright-Patterson Air Force Base, OH 45433-7765

Phone: (937) 255-3636 x4622 Fax: (937) 656-4055
timothy.lacey@afit.af.mil, scott.deloach@afit.af.mil

Keywords: multiagent, behavior, concurrent, verification

♦ The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force,

Department of Defense, or the US Government.

Abstract
Intelligent software agents are becoming very popular.
They are ideal for solving distributed problems that are too
difficult for a non-distributed system to solve. Distributed
agents can be used to retrieve, filter, and summarize
information as well as provide intelligent user interfaces.
However, multiagent systems are very complicated to build
and must be dependable. Agent conversation protocols, a
series of messages passed between agents, are the
cornerstone of multiagent systems. Agents also have tasks
associated with them that specify how an agent behaves.
This paper introduces a formal methodology that
automatically verifies the interaction between agents.
Agent behavioral specifications are created graphically in
the agentTool multiagent development environment. This
graphical representation is then transformed into a formal
modeling language called Promela that is analyzed by Spin
to ensure the interaction between agents is correct. This
type of verification provides the user with another tool to
ensure the system will perform as expected.

Introduction
Intelligent software agents are becoming very popular.
They are ideal for solving distributed problems that are too
difficult for a non-distributed system to solve. Distributed
agents can be used to retrieve, filter, and summarize
information as well as provide intelligent user interfaces.
However, multiagent systems are very complicated to build
and must be dependable.

Software agents operate in various distributed systems.
Open agent systems are those where agents can interact
with each other via autonomous and unstructured
conversations. Agents may have goals and pursue them
with whatever means they have available. Much of the
software agent research is targeted for open systems.
Closed agent systems are those where agents interact with
each other via structured and predictable communication
protocols or conversations. All players in the system are
known and all conversations follow specific patterns.

Military applications and electronic commerce are just two
areas where closed multiagent systems are used.

Before a multiagent system can be trusted to perform as
expected, the communication protocols between the agents
must be formally verified. For example, errors in
conversation protocols can prevent orders from getting
through to subordinates or financial transactions from
being completed. At a higher level of abstraction, agent
behavior and interactions can be modeled as concurrent
“tasks”. Agent tasks are modeled using state transition
diagrams and essentially define the behavior of an agent.
The verification process includes checking that behavioral
models of interacting agents respond to agent messages
correctly. This paper introduces a formal methodology
that automatically verifies the interaction between agents.
Agent behavioral specifications are created graphically in
the agentTool multiagent development environment. This
graphical representation is then transformed into a formal
modeling language called Promela that is analyzed by Spin
to ensure the interaction between agents is correct. This
type of verification provides the user with another tool to
ensure the system will perform as expected.

Background
The best way for software developers to tackle complex,
large, or unpredictable domains is by breaking the problem
into smaller, more manageable tasks. Software agents can
be used to solve these small tasks while working together
to solve larger problems. Sub-problems force agents to
communicate with each other while working together on
the “big picture.” Sycara has observed that agents must
often operate concurrently in a distributed environment to
accomplish a given task (Sycara, 1998).

agentTool
We are currently developing a software development
environment, called agentTool, to address the need for a

2

user friendly, robust tool for building multiagent systems.
The tool is an integrated environment that allows a user to
graphically design a multiagent system, verify the agent
conversations with an automated verification tool, and
automatically generate the source code for the designed
system. The agentTool environment incorporates the
Multiagent System Engineering (MaSE) methodology
(DeLoach, 1999). MaSE is both a methodology and a
language for designing multiagent systems and includes
four levels of design: domain, agent, component, and
system.

Figure 1: MASE Overview

Figure 1 shows an overview of the MASE methodology.
During domain level design, agent classes and agent
interactions are defined. During agent level design, the
internal architecture of each agent is designed. During
component level design, individual components are
designed within each agent. Finally, during system level
design, we determine which domain agents to use, where
they reside, and what data they have access to.

Agents communicate with each other using patterns of
messages called conversations (Greaves, 1999).
Conversations are modeled using state transition diagrams
(Pressman, 1997). Given a set of conversation state
transition diagrams, communication between agents can be
simulated and every possible message combination
exercised. Using this approach, conversations are deemed
valid if the desired message sequence takes place between
the communicating agents. This process of deeming the
conversations valid or invalid is called verifying the agent
conversations. Conversations can be verified manually by
a human analyst or automatically by intelligent software
and automated tools (Lacey, 2000).

Individual agent behavior is described by specifying a
concurrent task that is associated with an agent. Modeling
an agent’s behavior in this manner is very similar to the
way we model agent conversations. However, tasks differ
from conversations in that conversations are a lower level
of detail than tasks. An agent may be composed of one or

more tasks that model all of the interactions an agent must
implement. Conversations are simply the preferred method
of implementing agent-to-agent interaction.

Promela/Spin
We use Promela and Spin to formally model agent
interactions (Lacey, 2000). With Promela and Spin, we
can detect deadlock, livelock, assertion violations, and
many other communication centric errors while efficiently
using computer resources.

Automatic Verification of Agent Behavioral
Models

The present method of protocol verification requires a
human to manually model a protocol in a formal language
so the verifier can be used. Formal methods are very
difficult to understand and use in this manner. The
challenge then is to automatically generate the formal
representation of a behavioral model and then use an
automated tool to verify that this representation is free
from interaction errors. Figure 2 is a top-level view of the
overall process.

Figure 2: Top Level View of Methodology
Specifying Agent Behavior
In agentTool, the first step in creating an agent is to define
an agent role. We model agent behavior using tasks, which
specifies a single thread of control that defines a single task
that the agent can perform. These tasks are specified
graphically using state transition diagrams, as shown in
Figure 3. All tasks are assumed to start execution upon
startup of the agent and continue until the agent terminates
or an end state is reached.

Figure 3: Concurrent Task

We define the entirety of an agent’s behavior as
consisting of n concurrent tasks, which execute in parallel.
Actions are used to specify the actual functions carried out
by the agent and are performed inside the task states.
While these tasks execute concurrently and carry out high-

 Create Behavioral Model

Create Formal
Representation

Verify

 idle state1
x = action(y)

state2
a = action(b)

receive(message,ag)

send(error,ag)
receive(ack,ag)

[StartUp] [ValidMessage]

3

level behavior, they can be coordinated using internal
events. Internal events are passed from one task to another
and are specified on the transitions between states. To
communicate with other agents, external messages can be
sent and received. These messages are specified internally
as send and receive events. These events send and retrieve
messages from the message-handling component of the
agent, which is assumed to exist. Besides communication
with other agents, tasks can interact with the environment
via reading percepts or performing operations that affect
the environment. This interaction is typically captured via
functions defined in the states. By including reasoning
within tasks, agents are not “hardwired” or purely
reflexive. They can plan, search, or use knowledge-based
reasoning to decide on appropriate actions. Concurrent
task diagrams allow the modeling of sophisticated
coordination protocols such as the Contract Net protocol,
the English-Auction protocol, or the Dutch-Auction
protocol.

Syntax
The syntax of a concurrent task has two components: states
and transitions. As defined above, the states and
transitions are similar to the states and transitions of most
other finite state models. States represent processing that
goes on internal to the agent. This processing is denoted
by a sequence of actions. Transitions denote
communication between agents or between tasks.

In agentTool, we allow interaction between multiple
tasks. Agent behavior models move through various states
until eventually, both sides of the interaction end up in
valid “end” states and the interaction is complete. The
state transition diagram allows us to visualize the various
states that a behavioral model goes through and the events
that cause the task to move from state to state.

Example
This paper demonstrates how the Contract Net protocol is
modeled and verified using agent tasks. Figures 4 and 5
show abstract behavioral models for a “Manager” agent
and a “Bidder” agent respectively. The abstract behavioral
task model is created using the syntax and semantics
described in (DeLoach, 2000). We briefly describe some
of the semantics here. The abstract behavioral model is
then translated, with human assistance, to a concrete
behavior model from which Promela code can be derived.
After creating the Promela model, we verify the behavior
models are free from undesirable communication
properties such as deadlock.

Creating an Abstract Behavioral Model
The beginning state in a behavior model is the start state,
signified by a solid circle. Any state can be a valid ending
state, provided the state has been designated as a valid end
state. Each state, other than the start state, is drawn as an
unfilled rounded edge rectangle. The state’s name is inside

the rectangle. Arrows between states indicate transitions
between those states and the direction of the transition.
Labels on the arrows indicate the events and actions that
take place to cause a transition from one state to another
and follow the notation Trigger [guard condition]
transmission(s).

The transition label may contain some or all of this
information. Each state may have more than one entry
point and exit point. If a state has more than one enabled
exit point, then a priority hierarchy determines which
transition is executed. This hierarchy is received events
(by order of receipt), send events (by order of receipt),
received messages (by order of receipt), send messages (by
order of receipt), guard conditions (multiple guard
conditions must be mutually exclusive), and null
transitions (only one per state).

Figure 4: Contract Net Manager Abstract Task

Figure 5: Contract Net Bidder Abstract Task

There is also a third agent task involved in this protocol.
A “Boss” agent starts the whole process by sending a
contract to the manager. Figure 6 shows the abstract Boss
agent task.

Figure 6: Contract Net Boss Abstract Task

prepareBid
cost=costToPerform(task)

bid=acceptability(cost,task)

idle

receive(announce(task),mgr)

wait

evaluate

receive(acknowledge,mgr)

receive(announce(task,cost),mgr)
/send(acknowledge,mgr)

[bid]/send(aBid(task,cost),mgr)

[NOT bid]

receive(sorry(task),mgr)

startTask
start(task)

waitwaitidleidle /send(contract(task),mgr)

receive(contract(task,cost,BidderX),mgr)

begin
time = setTimeout()

list = newList()

idle

wait
t = setTimer(time)

/send(announce(task),<bidders>)

receive(aBid(task,cost),a)

evaluate
winner=evaluateBids(list)
list=remove(winner,list)

[timeExpired(t)]

update
rec=<cost,a>

list=add(rec,list)

informAll
loser=top(list)

list=removeTop(list)
/send(announce(task,cost),winner);

[size(list) > 0]/send(sorry(task),loser);

receive(acknowledge,winner) [size(list) = 0]
/send(contract(task,cost,winner),boss)

/send(acknowledge,a);

receive(contract(task),boss)

4

Figure 7: Contract Net Concrete Manager Task

Creating a Concrete Behavioral Model
Before a formal model can be automatically generated with
Promela, the abstract behavior model must be transformed
into a concrete behavioral model. This transformation will
require some user intervention. We explain how this
transformation occurs using the Manager and Bidder
abstract behavior models from Figures 4 and 5. Figures 7
and 8 contain the concrete behavior models of the Manager
and Bidder tasks respectively.

Figure 8: Contract Net Concrete Bidder Task

After the system designer creates the abstract behavior
model, the designer invokes agentTool to automatically
verify the abstract behavior model. The first step in the
verification process is to create a concrete behavior model
from the abstract behavior model. The transformation
process begins by copying all the states from the abstract
behavior model onto a new task design window for the
concrete behavior model. The transformation next
analyzes each state transition. Every transition from the
abstract behavior model will be recreated in the concrete
behavior model, but with more detailed information. We
are concerned with transforming only send actions, receive
actions, and guard conditions as these are the only
elements possible on any given transition.

First we look at send actions. A send action may send a
message to one or more recipients. Therefore, we format
any send message so the recipient field can be a set of
recipients. For example, the send action

/send(announce(task),<bidders>) mandates the announce
message be sent to one or more bidders. When agentTool
encounters this type of notation during the abstract to
concrete transformation, it prompts the designer for the
number of recipients to use during the verification process.
After the designer enters a quantity greater than or equal to
one, the send action is redefined with a set of recipients as
/send(announce(task),<bidders1,bidders2,bidders3>).
From this notation, Promela code can be created
automatically.

The next element of a transition we transform is the
receive action. If the inter-task communication involves a
multicast message, we define extra variables to keep track
of the received messages. We want to know if a particular
message is received so we define a boolean variable for
each potential received message that matches the sender of
that message. For a received message of aBid from
bidders1 we define a boolean variable receivedaBid1. We
define similar variables for bidders2 and bidders3.
Anticipating we will want to send an acknowledge message
to the sender of a received message, we define a variable
that can be tested from another state. We define the
variable the same way we defined the boolean variable for
receiving a message. We name the variable sendaBid1 for
receiving the message aBid from bidders1. We also define
a boolean variable for determining if we have notified a
Bidder of winning or losing. This variable also links the
message with the Bidder sending an aBid message and
follows the naming scheme notifiedaBid1 for an aBid
message received from Bidder1. Finally, anticipating we
might not actually receive aBid messages from all the
Bidders, we count the number of aBid messages received.
We define a variable cntaBid to keep track of the received
aBid messages.

The final element of a transition that must be
transformed is the guard condition. We analyze each of
the guard conditions defined in the abstract behavior model
and combine them with the variables we created for
multicast communications to produce a concrete behavior
model that can be easily converted into Promela. Through
research, we observe certain patterns of behavior that can
be expected to occur when dealing with multicast
communications. Based on these patterns of behavior, we
structure the transitions so a simulation can be performed
on the behavior model. We have not yet implemented the
automatic transformation based on patterns of behavior,
but anticipate full implementation during future work.

Creating a Formal Representation
Before a behavior model can be verified, it must be
converted into a formal modeling language. We use
Promela to create these models. Translating a concrete
behavior model into Promela is straightforward. First, we
must define the types of messages used in the tasks’
interaction. This is done in Promela using an mtype

prepareBid
cost=costToPerform(task)

bid=acceptability(cost,task)

prepareBid
cost=costToPerform(task)

bid=acceptability(cost,task)

idleidle

receive(announce(task),Manager)

waitwait

evaluateevaluate

receive(acknowledge,Manager)

receive(announce(task,cost),Manager)
/send(acknowledge,<Manager>

[bid]/send(aBid(task,cost),<Manager>)

[NOTbid]

receive(sorry(task),Manager)

startTask
start(task)
startTask
start(task)

begin
time = setTimeout()

list = newList()

begin
time = setTimeout()

list = newList()

idleidle

wait
t = setTimer(time)

wait
t = setTimer(time)

/send(announce(task),
<bidders1,bidders2,bidders3>)

receive(aBid(task,cost),a)
/receivedaBidX=true;sendaBidX=true;
cntaBid=cntaBid+1

evaluate
winner=evaluateBids(list)
list=remove(winner,list)

evaluate
winner=evaluateBids(list)
list=remove(winner,list)

[timeExpired(t)]

update
rec=<cost,BidderX>

list=add(rec,list)

update
rec=<cost,BidderX>

list=add(rec,list)

informAll
loser=top(list)

list=removeTop(list)

informAll
loser=top(list)

list=removeTop(list)

[receivedaBidX]
/send(announce(task,cost),<BidderX>);
winneraBidX=true;cntaBid=cntaBid-1;

notifiedaBidX=true

[receivedaBidX && !notifiedaBidX]
/send(sorry(task),<BidderX>);

cntaBid=cntaBid-1;notifiedaBidX=true

receive(acknowledge,winner) [cntaBid==0]
/send(contract(task,cost,winner),<Boss>)

[sendaBidX]
/send(acknowledge,BidderX);
sendaBidX=false

receive(contract(task),Boss)

5

declaration that allows a programmer to declare constants
as shown below.

mtype = { announce, aBid, acknowledge, sorry, bid, NOTbid,
timeExpired, contract };

Next, we must define the channel over which the
messages will be sent. The following statement declares a
variable MgrTobidders1 is of the type chan, that it
does not have a buffer to hold messages, and that messages
of type mtype can be sent on it.

chan MgrTobidders1 = [0] of {mtype};

We default the buffer size to zero forcing the
synchronization of message passing. Synchronous
message passing is a modeling decision that ensures
interactions proceed as intended without extra messages
being transmitted. Increasing the buffer size creates a
FIFO channel that enables us to model asynchronous
message passing. All messages have to be taken off the
channel in the order they are placed on the channel. If an
erroneous message is placed on the channel ahead of a
valid message, the valid message will never be read and
the interaction deadlocked. The number of interactions
defined in the behavior model determines the number of
channel declarations.

The next step is to define processes to emulate each side
of the interaction. Promela has a construct called a
proctype that models the task structure for each agent.
Each process will contain the states of one task. The idea
is to begin the process in the start state and end in an
acceptable end state, while moving from states only if
explicitly directed to do so. Figure 7 is the Promela
declaration for the behavior model of the Manager task in
Figure 4. This task is modeled communicating with three
instances of the Bidder task… bidders1, bidders2, and
bidders3.

proctype ContractNetMgr()
{startState:
 do
 :: goto endIdleState
 od;
 endIdleState:
 do
 :: BossToMgr?contract -> goto beginState
 od;
 beginState:
 do

 :: MgrTobidders1!announce;
 MgrTobidders2!announce;
 MgrTobidders3!announce; goto waitState

 od;
 waitState:
 do

 :: MgrTobidders1?aBid ->
 receivedaBid1 = true; sendaBid1=true;
 cntaBid = cntaBid + 1;
 goto updateState

 :: MgrTobidders2?aBid ->
 receivedaBid2 = true; sendaBid2=true;
 cntaBid = cntaBid + 1;
 goto updateState

 :: MgrTobidders3?aBid ->
 receivedaBid3 = true; sendaBid3=true;
 cntaBid = cntaBid + 1;
 goto updateState
 :: timeExpired -> goto evaluateState
 od;
 updateState:
 do
 :: sendaBid1 -> MgrTobidders1!acknowledge;
 sendaBid1=false; goto waitState
 :: sendaBid2 -> MgrTobidders2!acknowledge;
 sendaBid2=false; goto waitState
 :: sendaBid3 -> MgrTobidders3!acknowledge;
 sendaBid3=false; goto waitState
 od;
 evaluateState:
 do
 :: receivedaBid1 -> MgrTobidders1!announce;
 winneraBid1 = true; notifiedaBid1 = true;
 cntaBid = cntaBid - 1;
 goto informAllState
 :: receivedaBid2 -> MgrTobidders2!announce;
 winneraBid2 = true; notifiedaBid2 = true;
 cntaBid = cntaBid - 1;
 goto informAllState
 :: receivedaBid3 -> MgrTobidders3!announce;
 winneraBid3 = true; notifiedaBid3 = true;
 cntaBid = cntaBid - 1;
 goto informAllState
 od;
 informAllState:
 do
 :: receivedaBid1&¬ifiedaBid1 == false ->
 notifiedaBid1=true; MgrTobidders1!sorry;
 cntaBid = cntaBid - 1;
 goto informAllState
 :: receivedaBid2&¬ifiedaBid2 == false ->
 notifiedaBid2=true; MgrTobidders2!sorry;
 cntaBid = cntaBid - 1;
 goto informAllState
 :: receivedaBid3&¬ifiedaBid3 == false ->
 notifiedaBid3=true; MgrTobidders3!sorry;
 cntaBid = cntaBid - 1;
 goto informAllState
 :: cntaBid==0 && MgrTobidders1?acknowledge;
 BossToMgr!contract; goto endIdleState
 :: cntaBid==0 && MgrTobidders2?acknowledge;
 BossToMgr!contract; goto endIdleState
 :: cntaBid==0 && MgrTobidders3?acknowledge;
 BossToMgr!contract; goto endIdleState
 od;}

Figure 7: Promela Code for Manager Task

For an example of how a Promela model works, refer to
Figure 7. In the ContractNetMgr task is a wait state. This
state has two possible exit transitions. If an aBid message
is received via any of the three MgrTobiddersX channels,
control is transitioned to the update state, an acknowledge
message is sent back out the same channel, and the
transition cycles back to the waitState. If the guard
condition timeExpired becomes enabled while control is in
the wait state, then the task transitions to the evaluateState.

Figure 8 is the Promela declaration for one of the Bidder
tasks in Figure 5 that is communicating with the Manager
task in Figure 4.

6

proctype ContractNetBidder1()
{startState:
 do
 :: goto endIdleState
 od;
 endIdleState:
 do
 :: MgrTobidders1?announce ->
 goto prepareBidState
 od;
 prepareBidState:
 do
 :: bid -> MgrTobidders1!aBid; goto waitState
 :: NOTbid -> goto endIdleState
 od;
 waitState:
 do
 :: MgrTobidders1?acknowledge; goto
 evaluateState
 od;
 evaluateState:
 do
 :: MgrTobidders1?announce ->
 MgrTobidders1!acknowledge;
 goto startTaskState
 :: MgrTobidders1?sorry; goto endIdleState
 od;
 startTaskState:
 do
 :: goto endIdleState
 od;}

Figure 8: Promela Code for Bidder Task

The keyword proctype declares a process. The States
begin with a label followed by a colon. The do..od loops
trap the flow of control inside their respective states. You
can only exit a do..od loop with a goto statement or a break
statement. The goto transfers control to another state while
the break just exits the loop and falls through into the next
state. For obvious reasons, it is unacceptable to fall into
another state unless explicitly directed to do so. An
exclamation point (!) after the channel variable
MgrToAgent1 signifies the announce message has been
placed on the channel. A question mark (?) after the
channel variable MgrToAgent1 signifies the message
following the question mark is taken off the channel via a
receive action if it has been placed on the channel. The
arrow (->) is a statement separator and serves as an
implication symbol. If the statement before the arrow is
executed then the statement after the arrow is also
executed. The semicolon (;) is also a statement separator
but carries no implications.

Once all the tasks’ behavior models have been created,
we define a process to start the conversation processes
called an init process. The keyword atomic mandates all
statements enclosed within its brackets will be executed
without interruption by external processes. The keyword
run starts the processes running in parallel. Figure 9 shows
the init procedure for starting five tasks, a Boss, Manager,
and three Bidders.

Verification
We can now use Spin to check for interaction errors. The
type of error we detect is deadlock. Spin will create an
analyzer to search the entire state space of the tasks’
interaction, simulating every possible combination of
messages in the interaction until either a deadlock
condition occurs or the state space is exhausted. Task
interactions are considered deadlocked if they stop
executing in any state other than a valid end state (marked
by the task designer). If a deadlock condition is detected,
the analyzer writes a trace file that can be used to create a
message sequence trace pinpointing the series of message
events that led to the deadlock.

init
{atomic
 { run ContractNetBoss();
 run ContractNetMgr();
 run ContractNetBidder1();
 run ContractNetBidder2();
 run ContractNetBidder3();}}

Figure 9: Init Procedure for ContractNet Protocol

Error Detected
The ContractNet protocol as modeled in Figures 4 and 5
contains an error. If the Manager task sends multiple
announce messages while transitioning from the start state
to the wait state, and the timeExpired guard condition in
the wait state becomes enabled before all of the Bidders
have had a chance to respond, then the Bidder tasks that
want to place a bid cannot. This is because the Manager
task is not in a state that will accept more bids.
Additionally, Bidder agents that tried to respond with a late
bid and transmitted a bid to the Manager task have now
hung themselves up because the transmitted message
cannot be received. This error condition was detected
using our methodology with Promela and Spin and is
shown in Figure 10.

proc 0 = :init:
proc 1 = ContractNetBoss
proc 2 = ContractNetMgr
proc 3 = ContractNetBidder1
proc 4 = ContractNetBidder2
proc 5 = ContractNetBidder3
q\p 0 1 2 3 4 5
 1 . BossToMgr!contract
 1 . . BossToMgr?contract
 2 . . MgrTobidders1!announce
 2 . . . MgrTobidders1?announce
 3 . . MgrTobidders2!announce
 3 MgrTobidders2?announce
 4 . . MgrTobidders3!announce
 4 MgrTobidders3?announce
 4 MgrTobidders3!aBid
 4 . . MgrTobidders3?aBid
 4 . . MgrTobidders3!acknowledge
 4 MgrTobidders3?acknowledge
 3 MgrTobidders2!aBid
 3 . . MgrTobidders2?aBid
 3 . . MgrTobidders2!acknowledge
 3 MgrTobidders2?acknowledge
 3 . . MgrTobidders2!announce
 3 MgrTobidders2?announce
 4 . . MgrTobidders3!sorry

7

 4 MgrTobidders3?sorry
 3 MgrTobidders2!acknowledge
 3 . . MgrTobidders2?acknowledge
 1 . . BossToMgr!contract
 1 . BossToMgr?contract
spin: trail ends after 58 steps

final state:

#processes: 6
 receivedaBid1 = 0
 receivedaBid2 = 1
 receivedaBid3 = 1
 winneraBid1 = 0
 winneraBid2 = 1
 winneraBid3 = 0
 sendaBid1 = 0
 sendaBid2 = 0
 sendaBid3 = 0
 notifiedaBid1 = 0
 notifiedaBid2 = 1
 notifiedaBid3 = 1
 cntaBid = 0
 58: proc 5 (ContractNetBidder3) line 153 "Goverify"
(state 7) <valid endstate>
 58: proc 4 (ContractNetBidder2) line 122 "Goverify"
(state 7) <valid endstate>
 58: proc 3 (ContractNetBidder1) line 96 "Goverify"
(state 11)
 58: proc 2 (ContractNetMgr) line 42 "Goverify"
(state 7) <valid endstate>
 58: proc 1 (ContractNetBoss) line 33 "Goverify"
(state 19) <valid endstate>
 58: proc 0 (:init:) line 187 "Goverify" (state 7)
<valid endstate>
6 processes created

Figure 10: Error Trace for Contract Net Protocol

Figure 11: Corrected ContractNet Manager Task

Error Corrected
Correcting the ContractNet protocol required changes in
both the Manager and Bidders tasks. Since it is possible
for Bidders to send aBid messages to the Manager after the
Manager has finished waiting for messages, we must be
prepared to handle late messages. The Manager task was
changed to send sorry replies back to any Bidder placing a
bid after the timeout had occurred. It is also possible that
no Bidders actually place a bid. Therefore, another fix was
to place a transition from the evaluate state back to the idle
state in the case no bids were received before the time

expired. Figure 11 shows the corrected task diagram for
the Manager task.

The Bidder task was changed to receive a sorry message
in the case a late bid was sent to the Manager task. This
allows the Bidder task to return to its normal idle state.
Figure 12 shows the corrected Bidder task diagram.

Figure 12: Corrected ContractNet Bidder Task

Feedback
All errors detected by agentTool are displayed graphically
by highlighting the state and/or transition that caused the
error. When an error condition occurs, Spin generates a
trace file that can be used to recreate the simulation that
detected the error. Using this simulation, we can pinpoint
the states and often the exact transitions that are causing
the problems. This feature has not been fully implemented
for tasks in agentTool, but has been implemented for
verifying conversations (Lacey, 2000).

Conclusions
The automatic verification of agent tasks’ interactions is
possible with our methodology. Ongoing research will
determine the patterns of behavior required to predict the
correct modeling of complicated agent interaction
protocols such as the Contract Net protocol and various
auction protocols. These patterns of behavior will be used
to make the transformation from an abstract behavioral
model to a concrete behavioral model as seamless as
possible, with a minimum of user input. Finally, the
automatic generation and analysis of Promela code from
state transition diagrams has been demonstrated by (Lacey,
2000) and a similar process is used here to verify
behavioral models.

Related Research
Spin is a generic verification system and has been used
extensively to verify real-life problems such as algorithms,
communications network design problems, and protocol
design problems (Holzmann, 1997). Some agent
researchers are looking at how to represent conversations
with formal languages and how to verify a model meets a
specification (Greaves, 1999). FIPA has taken measures to
publish “verifiably correct” protocols that, if implemented
correctly, will work as published (FIPA, 1998). Some
groups define agent conversations with finite state

receive(sorry,Manager)
prepareBid

cost=costToPerform(task)
bid=acceptability(cost,task)

prepareBid
cost=costToPerform(task)

bid=acceptability(cost,task)

idleidle

receive(announce(task),
Manager)

waitwait

evaluateevaluate

receive(acknowledge,Manager)

receive(announce(task,cost),Manager)
/send(acknowledge,<Manager>

[bid]
/send(aBid(task,cost),<Manager>)

[NOTbid]

receive(sorry(task),Manager)

startTask
start(task)
startTask
start(task)

begin
time = setTimeout()

list = newList()

idle

wait
t = setTimer(time)

/send(announce(task),<bidders>)

receive(aBid(task,cost),a)

evaluate
winner=evaluateBids(list)
list=remove(winner,list)

[timeExpired(t)]

update
rec=<cost,a>

list=add(rec,list)

informAll
loser=top(list)

list=removeTop(list)

/send(announce(task,cost),winner);

[size(list) > 0]/send(sorry(task),loser);

receive(acknowledge,winner) [size(list) = 0]
/send(contract(task,cost,winner),boss)

/send(acknowledge,a);

receive(contract(task),boss)

receive(aBid(task,cost),a)
/send(sorry(task),a)

receive(aBid(task,cost),a)
/send(sorry(task),a)

receive(aBid(task,cost),a)
/send(sorry(task),a)

[size(list) = 0]
/send(contract(task,cost,noWinner),boss)

8

machines, convert them manually to formal languages, and
then mathmatically prove them correct (Martin, 1999).
However, this is the only research we know that allows a
system designer to graphically design agent interactions,
automatically verify properties of multiagent systems such
as agent conversations and agent task interaction, and
automatically provide feedback to the system designer
pinpointing the source of error conditions.

Summary
This paper describes the methodology used to
automatically verify agent behavioral models in a
multiagent system. The process begins by modeling the
agent interactions as tasks with state transition diagrams in
agentTool using the MaSE methodology. Abstract
behavioral models are then semi-automatically translated
into concrete behavioral models which are then converted
into Promela code that is analyzed by Spin for deadlock
errors. Feedback on errors is provided to agentTool users
through text messages and graphical highlighting.

Acknowledgements
The Air Force Office of Scientific Research supported this
research. We thank Captain Alex Kilpatrick for his
financial support and latitude provided in this endeavor.
We also thank Tom Hartrum for his support and advice.

References
DeLoach, Scott A. Multiagent Systems Engineering: A
Methodology and Language for Designing Agent Systems,
Proceedings of a Workshop on Agent-Oriented Information
Systems (AOIS ’99). 45-57. Seattle, WA. May 1, 1999.

Foundation for Intelligent Physical Agents. Agent
Communication Language. FIPA 97 Specification, Version
2.0. October 1998.

Greaves, M. and others. Agent Conversation Policies,
Handbook of Agent Technology. Cambridge: AAAI Press/
MIT Press, 1999.

Holzmann, Gerard J. The Model Checker Spin, IEEE
Transactions On Software Engineering, Volume 23,
Number 5: 279-295 (May 1997).

Lacey, Timothy H. and Scott A. DeLoach. “Automatic
Verification of Multiagent Conversations,” Submitted to
Proceedings of the Midwest Artificial Intelligence and
Cognitive Science Conference. 2000.

Martin, Francisco J., Enric Plaza, and Juan A. Rodriguez-
Aguilar. “Conversation Protocols: Modeling and
Implementing Conversations in Agent-Based Systems,”
Proceedings of the Automomous Agents ’99 Workshop on
Specifying and Implementing Conversation Policies. 49-
58. Seattle, 1999.

Pressman, Roger S. Software Engineering: A
Practitioner’s Approach. New York: McGraw-Hill, 1997.

Sycara, Katia P. Multiagent Systems, AI Magazine: 79-92,
(Summer 1998).

